Feb 18, 1992

Congregation of gangliosides at the junction between two model membranes

Biochemistry
G J Brewer, N Matinyan

Abstract

The diversity and distribution of gangliosides in vertebrate tissue suggests an important role in cellular recognition. Two types of experiments are reported to test the hypothesis that gangliosides can congregate to form an adhesive junction between two membranes. First, to monitor ganglioside distribution and mobility in different regions of two large spherical bilayer membranes, fluorescent derivatives of natural gangliosides were synthesized. Second, the cation carrier nonactin was used as a conductance probe to measure the membrane surface potential, which would be altered if there were a redistribution of the charged gangliosides. These studies were conducted in large spherical artificial membranes made from egg phosphatidylcholine or oleoylpalmitoylphosphatidylcholine with 0-12 mol % bovine brain gangliosides dissolved in n-decane. The fluorescent gangliosides utilized were lucifer yellow adducts to the sialic acids (LY-gangliosides) or a cis-paranaric acid substitution of the N-acyl moiety in the ceramide portion of gangliosides GM1 and GD1a (paranaryl-GM1 and paranaryl-GD1a). The polarized fluorescence from the adhesive junction between two membranes containing LY-gangliosides or either paranarylganglioside was compare...Continue Reading

Mentioned in this Paper

Vertebrates
AKD-1A
Parinaric acid, (all-E)-isomer
Tissue Membrane
Derivatives
Ceramides
Resting Potentials
Bos taurus
Lucifer yellow
Adduct

About this Paper

Related Feeds

Adherens Junctions

An adherens junction is defined as a cell junction whose cytoplasmic face is linked to the actin cytoskeleton. They can appear as bands encircling the cell (zonula adherens) or as spots of attachment to the extracellular matrix (adhesion plaques). Adherens junctions uniquely disassemble in uterine epithelial cells to allow the blastocyst to penetrate between epithelial cells. Discover the latest research on adherens junctions here.