Oct 25, 2016

Constructing Interconsistent, Reasonable, and Predictive Models for Both the Kinetic and Thermodynamic Properties of HIV-1 Protease Inhibitors

Journal of Chemical Information and Modeling
Sujun QuHu Mei

Abstract

Accumulated evidence suggests that the in vivo biological potency of a ligand is more strongly correlated with the binding/unbinding kinetics than the equilibrium thermodynamics of the protein-ligand interaction (PLI). However, the existing experimental and computational techniques are largely insufficient and limited in large-scale measurements or accurate predictions of the kinetic properties of PLI. In this work, elaborate efforts have been made to develop interconsistent, reasonable, and predictive models of the association rate constant (kon), dissociation rate constant (koff), and equilibrium dissociation constant (KD) of a series of HIV protease inhibitors with different structural skeletons. The results showed that nine Volsurf descriptors derived from water (OH2) and hydrophobic (DRY) probes are key molecular determinants for the kinetic and thermodynamic properties of HIV-1 protease inhibitors. To the best of our knowledge, this is the first time that interconsistent and reasonable models with strong prediction power have been established for both the kinetic and thermodynamic properties of HIV protease inhibitors.

  • References24
  • Citations4

References

Mentioned in this Paper

Thermodynamics
In Vivo
Mucocutaneous Lymph Node Syndrome
HIV Protease Inhibitors
Inhibitors
HIV Infections
Nasal Skeleton Structure
SERPINF2
Description
Dried Whole Milk

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.