Unexpected sounds non-selectively inhibit active visual stimulus representations

BioRxiv : the Preprint Server for Biology
C. Soh, Jan R Wessel

Abstract

The brain's capacity to process unexpected events is key to cognitive flexibility. The most well-known effect of unexpected events is the interruption of attentional engagement (distraction). We tested whether unexpected events interrupt attentional representations by activating a neural mechanism for inhibitory control. This mechanism is most well-characterized within the motor system. However, recent work showed that it is automatically activated by unexpected events and can explain some of their non-motor effects (e.g., on working memory representations). Here, human participants attended to lateralized flickering visual stimuli, producing steady-state visual evoked potentials (SSVEP) in the scalp-electroencephalogram. After unexpected sounds, the SSVEP was rapidly suppressed. Using a functional localizer (stop-signal) task and independent component analysis, we then identified a fronto-central EEG source whose activity indexes inhibitory motor control. Unexpected sounds in the SSVEP task also activated this source. Using single-trial analyses, we found that sub-components of this source differentially relate to sound-related SSVEP changes: while its N2 component predicted the subsequent suppression of the attended-stimulus ...Continue Reading

Related Concepts

Study
Biochemical Pathway
AXIN1 gene
Beta catenin
Genes
APC gene
AXIN2 protein, human
Candidate Disease Gene
Beta Catenin Measurement
AXIN2 gene

Related Feeds

Adherens Junctions

An adherens junction is defined as a cell junction whose cytoplasmic face is linked to the actin cytoskeleton. They can appear as bands encircling the cell (zonula adherens) or as spots of attachment to the extracellular matrix (adhesion plaques). Adherens junctions uniquely disassemble in uterine epithelial cells to allow the blastocyst to penetrate between epithelial cells. Discover the latest research on adherens junctions here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cadherins and Catenins

Cadherins (named for "calcium-dependent adhesion") are a type of cell adhesion molecule (CAM) that is important in the formation of adherens junctions to bind cells with each other. Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells: alpha-catenin can bind to β-catenin and can also bind actin. β-catenin binds the cytoplasmic domain of some cadherins. Discover the latest research on cadherins and catenins here.