Mar 29, 2020

Context is everything: extrinsic signalling and gain-of-function p53 mutants

Cell Death Discovery
Ivano Amelio, Gerry Melino

Abstract

The TP53 genomic locus is a target of mutational events in at least half of cancers. Despite several decades of study, a full consensus on the relevance of the acquisition of p53 gain-of-function missense mutants has not been reached. Depending on cancer type, type of mutations and other unidentified factors, the relevance for tumour development and progression of the oncogenic signalling directed by p53 mutants might significantly vary, leading to inconsistent observations that have fuelled a long and fierce debate in the field. Here, we discuss how interaction with the microenvironment and stressors might dictate the gain-of-function effects exerted by individual mutants. We report evidence from the most recent literature in support of the context dependency of p53 mutant biology. This perspective article aims to raise a discussion in the field on the relevance that context might have on p53 gain-of-function mutants, assessing whether this should generally be considered a cell non-autonomous process.

  • References
  • Citations1

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations1

Citations

Mentioned in this Paper

Protein p53
Missense Mutation
Disease Progression
Malignant Neoplasms
Gene Mutant
Oncogenes
Gene Mutation
Study
Genome, Bacterial
Mutant Proteins

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Cell Death and Differentiation
S S Mello, L D Attardi
Clinical Cancer Research : an Official Journal of the American Association for Cancer Research
M G van Oijen, P J Slootweg
© 2020 Meta ULC. All rights reserved