Continuous glutamate production using an immobilized whole-cell system

Biotechnology and Bioengineering
H S Kim, D D Ryu


For the purpose of saving the energy and raw materials required in glutamate fermentation, an immobilized whole-cell system was prepared and its performance in a continuous reactor system was evaluated. Corynebacterium glutamicum (a mutant strain of ATCC 13058) whole cell was immobilized in K-carrageenan matrix and the gel structure was strengthened by treatment with a hardening agent. The effective diffusivities of carrageenan gel for glucose and oxygen were found to decrease significantly with an increase in carrageenan concentration, while the gel strength showed an increasing trend. Based on the physical and chemical properties of carrageenan gel, the immobilization method was improved and the operation of the continuous reactor system was partially optimized. In an air-stirred fermentor, the continuous production of glutamate was carried out. The effect of the dilution rate on glutamate production and operational stability were investigated. The performance of the continuous whole-cell reactor system was evaluated by measuring glutamate productivity for a period of 30 days; it was found to be far superior to the performance of conventional batch reactor systems using free cells.


Jan 1, 1983·Biotechnology Advances·P Linko
Jan 1, 1985·Biotechnology Advances·J M Radovich
Jan 1, 1994·Critical Reviews in Biotechnology·A GroboillotR J Neufeld
Jan 1, 1994·Critical Reviews in Biotechnology·S Norton, J C Vuillemard

Related Concepts

Cell-Free System
Dilution Technique
Cells, Immobilized

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.