Apr 8, 2020

Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia

BioRxiv : the Preprint Server for Biology
Emily Barbara CohenA. Toker


The vasculature within a tumor is highly disordered both structurally and functionally. Endothelial cells that comprise the vasculature are poorly connected causing vessels to be leaky and exposing the endothelium to a hypoxic microenvironment. Therefore, most anti-angiogenic therapies are generally inefficient and result in acquired resistance to increased hypoxia due to elimination of the vasculature. Recent studies have explored the efficacy of targeting metabolic pathways in tumor cells in combination with anti-angiogenic therapy. However, the metabolic alterations of endothelial cells in response to hypoxia has been relatively unexplored. Here, we measured polar metabolite levels in microvascular endothelial cells exposed to short- and long-term hypoxia with the goal of identifying metabolic vulnerabilities that can be targeted to normalize tumor vasculature and improve drug delivery. Many amino acid-related metabolites were altered by hypoxia exposure, especially within alanine-aspartate-glutamate, serine-threonine, and cysteine-methionine metabolism. Additionally, there were significant changes in de novo pyrimidine synthesis as well as glutathione and taurine metabolism. These results provide key insights into the metab...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genetic Drift
Spatial Memory
Isolation Aspects
Spatial Distribution
Resistance Process

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.