Aug 1, 1976

Control of breathing in uremia: ventilatory response to CO2 after hemodialysis

Journal of Applied Physiology
R W HamiltonA P Fishman

Abstract

The mechanisms responsible for the transient respiratory alkalosis which follows clinical hemodialysis were evaluated by studying the ventilatory response to carbon dioxide in chronic uremic patients, and in unanesthetized normal and chronic uremic goats. A significant increase in sensitivity to CO2 was found in acidotic uremic patients immediately (within 30 min) following hemodialysis (P less than 0.01). Sensitivity to CO2 returned to the predialysis value within 24 h. Lung volume and maximal breathing capacity were unchanged. A similar increase in sensitivity to CO2 was seen in nonacidotic uremic goats following hemodialysis. In the goats, these changes in sensitivity could not be explained by changes in cerebrospinal fluid acid-base status. Adding sufficient urea to the dialysate to prevent a fall in plasma urea concentration, eliminated this increase in sensitivity to CO2 in both uremic patients and goats. These results suggests that the transient respiratory alkalosis following hemodialysis is due to an increase in the sensitivity of the ventilatory response to carbon dioxide and is a consequence of dialysis-induced osmotic disequilibrium.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Hemodialysis
Dialysis Solutions
Dysequilibrium Syndrome
Uremia
Response to Carbon Dioxide
Urea Measurement
Plasma Urea
Capra hircus
Respiration
Hemolytic-Uremic Syndrome

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.