Apr 1, 1976

Control of inositol biosynthesis in Saccharomyces cerevisiae: properties of a repressible enzyme system in extracts of wild-type (Ino+) cells

Journal of Bacteriology
M R CulbertsonS A Henry


Inositol biosynthesis was studied in soluble, cell extracts of a wild-type (Ino) strain of Saccharomyces cerevisiae. Two reactions were detected: (i) conversion of D-glucose-6-phosphate to a phosphorylated form of inositol, presumably inositol-1-phosphate (IP synthethase, EC5.5.1.4), and (ii) conversion of phosphorylated inositol to inositol (IP phosphatase, EC3.1.3.25). The in vitro rate of conversion of glucose-6-phosphate to inositol was proportional to incubaion time and enzyme concentration. The pH optimum was 7.0. The synthesis of inositol required oxidized nicotinamide adenine dinucleotide (NAD) and was stimulated byNH4C1 and MgC12. NADP substituted poorly for NAD, and NADH inhibitedthe reaction. Phosphorylated inositol accumulated in the absence of MgC12, suggesting that inositol-phosphate is an intermediate in the pathway and that Mg ions stimulate the dephosphorylation of inositol-phosphate. IP synthetase was inhibited approximately 20% in the presence of inositol in the reaction mixture at concentrations exceeding 1 mM. The enzyme was repressed approximately 50-fold when inositol was present in the growth medium at concentrations exceeding 50 muM. IP synthetase reached the fully repressed level approximately 10 h aft...Continue Reading

  • References
  • Citations21


  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Biochemical Pathway
Phosphoric Monoester Hydrolases
Saccharomyces cerevisiae allergenic extract
Depressed - Symptom
Phosphate Measurement
Carbohydrate Epimerases
Phosphoric Monoester Hydrolase Activity
Stationary Phase - Research Equipment

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.