Apr 4, 2020

Bacterial envelope damage inflicted by bioinspired nanospikes grown in a hydrogel

BioRxiv : the Preprint Server for Biology
Kyung Hyuk KimJean Paul Allain


Device-associated infections are one of the deadliest complications accompanying the use of biomaterials, and despite recent advances in the development of anti-biofouling strategies, biomaterials that exhibit both functional tissue restoration and antimicrobial activity have been challenging to achieve. Here, we report the fabrication of bio-inspired bactericidal nanospikes in bacterial cellulose and investigate the mechanism underlying this phenomenon. We demonstrate these structures affects preferentially stiff membranes like those in Gram-positive bacteria, but exhibit cytocompatibility towards mammalian cells, a requisite for tissue restoration. We also reveal the bactericidal activity of the nanospikes is due to a pressure-induced mechanism, which depends on the cells adherence time, nanospikes geometry and spacing, cell shape, and mechanical properties of the cell wall. Our findings provide a better understanding of the mechanobiology of bacterial cells at the interface with nanoscale structures, which is fundamental for the rational design bactericidal topographies.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Parolfactory Area Structure (Body Structure)
Transcription, Genetic
Protein Biosynthesis
Gene Expression

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.