Mar 22, 2016

Normalization of Single Cell RNA Sequencing Data Using both Control and Target Genes

BioRxiv : the Preprint Server for Biology
Mengjie Chen, Xiang Zhou

Abstract

Single cell RNA sequencing (scRNAseq) technique is becoming increasingly popular for unbiased and high-resolutional transcriptome analysis of heterogeneous cell populations. Despite its many advantages, scRNAseq, like any other genomic sequencing technique, is susceptible to the influence of confounding effects. Controlling for confounding effects in scRNAseq data is thus a crucial step for proper data normalization and accurate downstream analysis. Several recent methodological studies have demonstrated the use of control genes for controlling for confounding effects in scRNAseq studies; the control genes are used to infer the confounding effects, which are then used to normalize target genes of primary interest. However, these methods can be suboptimal as they ignore the rich information contained in the target genes. Here, we develop an alternative statistical method, which we refer to as scPLS, for more accurate inference of confounding effects. Our method is based on partial least squares and models control and target genes jointly to better infer and control for confounding effects. To accompany our method, we develop a novel expectation maximization algorithm for scalable inference. Our algorithm is an order of magnitude...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Genome
Genes
Sequence Determinations, RNA
Genetic Analysis
Expectation Maximization Algorithm
Human RNA Sequencing
Genomics
Sequencing
Sequence Analysis, RNA

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Cycle Modeling

Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur. Discover the latest research on cell cycle modeling here.