DOI: 10.1101/006940Jul 8, 2014Paper

Convergent Evolution During Local Adaptation to Patchy Landscapes

BioRxiv : the Preprint Server for Biology
Peter L Ralph, Graham Coop


Species often encounter, and adapt to, many patches of locally similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise and spread in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the degree of constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies a model of the balance between these two routes to adaptation in continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel, locally adapted allele to appear in a patch of habitat where it is favored through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? How can we tell which has occurred, i.e. what population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration-selection equilibrium surround...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.