Jun 2, 2015

Copper-based nanoparticles induce high toxicity in leukemic HL60 cells

Toxicology in Vitro : an International Journal Published in Association with BIBRA
Ylva RodheLennart Möller

Abstract

From the increasing societal use of nanoparticles (NPs) follows the necessity to understand their potential toxic effects. This requires an in-depth understanding of the relationship between their physicochemical properties and their toxicological behavior. The aim of the present work was to study the toxicity of Cu and CuO NPs toward the leukemic cell line HL60. The toxicity was explored in terms of mitochondrial damage, DNA damage, oxidative DNA damage, cell death and reactive oxygen species (ROS) formation. Particle characteristics and copper release were specifically investigated in order to gain an improved understanding of prevailing toxic mechanisms. The Cu NPs revealed higher toxicity compared with both CuO NPs and dissolved copper (CuCl2), as well as a more rapid copper release compared with CuO NPs. Mitochondrial damage was induced by Cu NPs already after 2 h exposure. Cu NPs induced oxidation at high levels in an acellular ROS assay, and a small increase of intracellular ROS was observed. The increase of DNA damage was limited. CuO NPs did not induce any mitochondrial damage up to 6 h of exposure. No acellular ROS was induced by the CuO NPs, and the levels of intracellular ROS and DNA damage were limited after 2 h ex...Continue Reading

Mentioned in this Paper

Copper dioxide (CuO2)
Mitochondrial Toxicity
Necrosis
Acellular Membrane
Protoplasm
Oxidative Stress
Particle Size
Hairy Cell Leukemia
Oxidation
Copper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.