DOI: 10.1101/452219Oct 25, 2018Paper

Cortical subnetworks encode context of a visual stimulus

BioRxiv : the Preprint Server for Biology
Jordan P HammRafael Yuste

Abstract

Cortical processing of sensory events is significantly influenced by context. For instance, a repetitive or redundant visual stimulus elicits attenuated cortical responses, but if the same stimulus is unexpected or deviant, responses are augmented. This contextual modulation of sensory processing is likely a fundamental function of neural circuits, yet an understanding of how it is computed is still missing. Using holographic two-photon calcium imaging in awake animals, here we identify three distinct, spatially intermixed ensembles of neurons in mouse primary visual cortex which differentially respond to the same stimulus under separate contexts, including a subnetwork which selectively responds to deviant events. These non-overlapping ensembles are distributed across layers 2-5, though deviance detection is more common in superficial layers. Contextual preferences likely arise locally since they are not present in bottom up inputs from the thalamus or top-down inputs from prefrontal cortex. The functional parcellation of cortical circuits into independent ensembles that encode stimulus context provides a circuit basis underlying cortically based perception of novel or redundant stimuli, a key deficit in many psychiatric disor...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.