Dec 10, 2015

CrispRVariants: precisely charting the mutation spectrum in genome engineering experiments

BioRxiv : the Preprint Server for Biology
Helen LindsayMark D Robinson

Abstract

CRISPR-Cas9 and related technologies efficiently alter genomic DNA at targeted positions and have far-reaching implications for functional screening and therapeutic gene editing. Understanding and unlocking this potential requires accurate evaluation of editing efficiency. We show that methodological decisions for analyzing sequencing data can significantly affect mutagenesis efficiency estimates and we provide a comprehensive R-based toolkit, CrispRVariants and accompanying web tool CrispRVariantsLite, that resolves and localizes individual mutant alleles with respect to the endonuclease cut site. CrispRVariants-enabled analyses of newly generated and existing genome editing datasets underscore how careful consideration of the full variant spectrum gives insight toward effective guide and amplicon design as well as the mutagenic process.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Positioning Attribute
Gene Editing
Endonuclease
Evaluation
Site
Sequencing
Genomic DNA
Mutant
Screening Generic
Local

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

Related Papers

Journal of Vascular and Interventional Radiology : JVIR
Nicholas R PerkonsTerence P Gade
Development, Growth & Differentiation
Takashi Yamamoto, Harukazu Nakamura
Biochemical and Biophysical Research Communications
Haiwei ZhangHaibing Zhang
© 2020 Meta ULC. All rights reserved