Jun 1, 1981

Cyclic AMP-generating systems in rat hippocampal slices

Brain Research
M SegalR Hofstein


Properties of the norepinephrine (NE) stimulated, cAMP-generating system were studied in rat hippocampal slices. NE but not other putative neurotransmitters, caused a 3--4-fold rise in cAMP levels in the slices. All 3 main subdivisions of the hippocampus (HPC), the dentate gyrus, areas CA3 and CA1, possessed the capacity to produce cAMP. The latency to the NE stimulation of cAMP formation was about 20 sec but maximal stimulation was reached only after 5--10 min of incubation. Intrahippocampal injection of kainic acid (KA) caused a nearly complete destruction of hippocampal neurons and a marked increase in number of glial cells. NE caused a 12--15-fold rise in cAMP levels in KA-treated HPC. Compared to normal HPC where potency order of noradrenergic agonists indicated activation of a beta-1 receptor type, the pattern for the KA-treated HPC indicated the dominance of beta-2 receptors. The beta-1 antagonist, practolol, and the beta-2 antagonist, H35/25, were about equipotent in blocking the NE-stimulated cAMP formation in normal HPC. In KA-treated HPC, on the other hand, H35/25 was much more potent than practolol in inhibiting NE-stimulated cAMP formation. It is suggested that in the HPC beta-1 adrenergic receptors are primarily n...Continue Reading

Mentioned in this Paper

Antagonist Muscle Action
Kainic Acid
Cyclic AMP
Norepinephrine, (+, -)-Isomer
Cyclic Adenosine Monophosphate Measurement
Genus Hippocampus
Structure of Hippocampal Formation

About this Paper

Related Feeds

Adrenergic Receptors: Trafficking

Adrenergic receptor trafficking is an active physiological process where adrenergic receptors are relocated from one region of the cell to another or from one type of cell to another. Discover the latest research on adrenergic receptor trafficking here.