DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences

BioRxiv : the Preprint Server for Biology
Daniel Quang, Xiaohui Xie


Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for noncoding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of noncoding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is noncoding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting noncoding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory "grammar" to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models.

Related Concepts

Biological Markers
Biological Neural Networks
Neural Network Simulation
Translational Research
Protein Domain
Genetic Translation Process
Genome, Human

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.