De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

BioRxiv : the Preprint Server for Biology
Longxing CaoDavid Baker

Abstract

We used two approaches to design proteins with shape and chemical complementarity to the receptor binding domain (RBD) of SARS-CoV-2 Spike protein near the binding site for the human ACE2 receptor. Scaffolds were built around an ACE2 helix that interacts with the RBD, or de novo designed scaffolds were docked against the RBD to identify new binding modes. In both cases, designed sequences were optimized first in silico and then experimentally for target binding, folding and stability. Nine designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked bona fide SARS-CoV-2 infection of Vero E6 cells with IC 50 values ranging from 35 pM to 35 nM; the most potent of these - 56 and 64 residue hyperstable proteins made using the second approach - are roughly six times more potent on a per mass basis (IC 50 ~ 0.23 ng/ml) than the best monoclonal antibodies reported thus far. Cryo-electron microscopy structures of the SARS-CoV-2 spike ectodomain trimer in complex with the two most potent minibinders show that the structures of the designs and their binding interactions with the RBD are nearly identical to the computational models, and that all three RBDs in a single Spike protein can be engaged simultaneously. These hyp...Continue Reading

Citations

May 5, 2021·Expert Opinion on Drug Delivery·Miguel Pereira-SilvaAna Cláudia Santos

Methods Mentioned

BETA
fluorescence activated cell sorting
biolayer interferometry
PCR
FACS
flow cytometry
Circular dichroism

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.