Nov 8, 2018

Decoding G0 somatic mutants through deep phenotyping and mosaic pattern analysis in the zebrafish skeleton

BioRxiv : the Preprint Server for Biology
Claire J WatsonRonald Y Kwon

Abstract

Genetic mosaicism manifests as spatially variable phenotypes, whose detection and interpretation remains challenging. This study identifies biological factors influencing spatial phenotypic patterns in the skeletons of somatic mutant zebrafish, and tests methods for their analysis using deep phenotyping. We explore characteristics of loss-of-function clusters in the skeleton of CRISPR-edited G0 ("crispant") zebrafish, and identify a distinctive size distribution shown to arise from clonal fragmentation and merger events. Using microCT-based phenomics, we describe diverse phenotypic manifestations in somatic mutants for genes implicated in monogenic ( plod2 and bmp1a ) and polygenic ( wnt16 ) bone diseases, each showing convergence with germline mutant phenomes. Finally, we describe statistical frameworks for phenomic analysis which confers heightened sensitivity in discriminating somatic mutant populations, and quantifies spatial phenotypic variation. Our studies provide strategies for decoding spatially variable phenotypes which, paired with CRISPR-based screens, can identify genes contributing to skeletal disease.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Size
Patterns
WNT16 gene
PLOD2 gene
Abnormal Fragmented Structure
Genes
Spatial Distribution
PLOD2
Mutant Proteins

About this Paper

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.