May 24, 2019

Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species

Cell Systems
Genevieve L Stein-O'BrienElana J. Fertig


Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Retinal Diseases
Sequence Determinations
Anatomical Space Structure
Gene Expression
RNA, Small Cytoplasmic

Related Feeds

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.