Dec 15, 2018

Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina

Stem Cells
Joseph CollinMajlinda Lako


The rapid improvements in single cell sequencing technologies and analyses afford greater scope for dissecting organoid cultures composed of multiple cell types and create an opportunity to interrogate these models to understand tissue biology, cellular behavior and interactions. To this end, retinal organoids generated from human embryonic stem cells (hESCs) were analyzed by single cell RNA-sequencing (scRNA-Seq) at three time points of differentiation. Combinatorial data from all time points revealed the presence of nine clusters, five of which corresponded to key retinal cell types: retinal pigment epithelium (RPE), retinal ganglion cells (RGCs), cone and rod photoreceptors, and Müller glia. The remaining four clusters expressed genes typical of mitotic cells, extracellular matrix components and those involved in homeostasis. The cell clustering analysis revealed the decreasing presence of mitotic cells and RGCs, formation of a distinct RPE cluster, the emergence of cone and rod photoreceptors from photoreceptor precursors, and an increasing number of Müller glia cells over time. Pseudo-time analysis resembled the order of cell birth during retinal development, with the mitotic cluster commencing the trajectory and the large...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Single-Cell Analysis
Pluripotent Stem Cells
Sequence Determinations, RNA
Light Meromyosin
Extracellular Matrix
Statistical Cluster
G protein-coupled receptor RGR
Cell Differentiation Process

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Allogenic & Autologous Therapies

Allogenic therapies are generated in large batches from unrelated donor tissues such as bone marrow. In contrast, autologous therapies are manufactures as a single lot from the patient being treated. Here is the latest research on allogenic and autologous therapies.


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Adult Kidney Organoids at Single Cell Resolution

Single-cell RNA sequencing of the adult human kidney transcriptome can provide molecular information about cell-specific responses to environmental variables and disease states. This information can provide a dataset to benchmark human kidney organoids. Discover the latest research on adult kidney organoids at single cell resolution here.