Apr 25, 2020

Comparison of the Hi-C, GAM and SPRITE methods by use of polymer models of chromatin

BioRxiv : the Preprint Server for Biology
L. FiorilloMario Nicodemi

Abstract

Powerful technologies have been developed to probe chromatin 3D physical interactions genome-wide, such as Hi-C, GAM and SPRITE. Due to their intrinsic differences and without a benchmarking reference, it is currently difficult to assess how well each method represents the genome 3D structure and their relative performance. Here, we develop a computational approach to implement Hi-C, GAM and SPRITE in-silico to compare the three methods in a simplified, yet controlled framework against known polymer 3D structures. We test our approach on models of three 6-Mb genomic regions, around the Sox9 and the HoxD genes in mouse ES cells, and around the Epha4 gene in mouse CHLX-12 cells. The model-derived contact matrices consistently match Hi-C, GAM and SPRITE experiments. We show that in-silico Hi-C, GAM and SPRITE average data are overall faithful to the 3D structures of the polymer models. We find that the inherent variability of model single-molecule 3D conformations and experimental efficiency differently affect the contact data of the different methods. Similarly, the noise-to-signal levels vary with genomic distance differently in in-silico Hi-C, SPRITE and GAM. We benchmark the performance of each technology in bulk and in single...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Size
No Data re: Ingredient
Science of Morphology
Evaluation
Paraneoptera
Zebrafish
Learning
Species
Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

IEEE Transactions on Bio-medical Engineering
R B Northrop
Proceedings of the National Academy of Sciences of the United States of America
Zhangqiang YouZhigang Jiang
© 2020 Meta ULC. All rights reserved