Oct 17, 2019

Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice

Neurobiology of Disease
Fumiaki YokoiYuqing Li

Abstract

DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dim...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

TOR1A
In Vivo
Biochemical Pathway
TOR1A gene
Neurons
Gene Deletion
Substantia Nigra Structure
Dopamine D2 Receptor
Locomotion
Interneurons

Related Feeds

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.