DOI: 10.1101/457366Oct 30, 2018Paper

Deep reinforcement learning for the control of microbial co-cultures in bioreactors

BioRxiv : the Preprint Server for Biology
Neythen J TreloarChris P Barnes

Abstract

Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity (in comparison with pure cultures) and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence - reinforcement learning - in the control of co-cultures within continuous bioreactors. We confirm that feedback via reinforcement learning can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment, by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promisi...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.