PMID: 4426Apr 1, 1976

Defective synthesis of lipid intermediates for peptidoglycan formation in a stabilized L-form of Streptococcus pyogenes

Journal of Bacteriology
V M Reusch, C Panos

Abstract

Membrane preparations obtained from a stabilized L-form of Streptococcus pyogenes are incapable of synthesizing peptidoglycan from uridine-5'-diphospho-N-acetyl-D-muramyl-L-Ala-D-iso-Glu-L-Lys-D-Ala-D-Ala and uridine-5'-diphospho-N-acetyl-D-glucosamine, in contrast with similar preparations from the parental streptococcus. Furthermore, 50-fold higher levels of lipid intermediates which serve as membrane-bound substrates for peptidoglycan synthesis are synthesized in reaction mixtures containing streptococcal membranes than with similar preparations from the L-form. These observations suggest that the inability of this stabilized L-form to form a cell wall in vivo lies, at least in part, in its failure to synthesize significant quantities of the lipid substrates for peptidoglycan synthesis.

Related Concepts

Adenosine Triphosphate, Chromium Ammonium Salt
Plasma Membrane
Cell-Free System
Hydrogen-Ion Concentration
L Forms
Ligase
Lipids
Pseudomurein
Phosphotransferases
Bacteria, Flesh-Eating

Related Feeds

Bacterial Cell Wall Structure

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.

Bacterial Cell Wall Structure (ASM)

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.