Nov 27, 2014

Engineered chemotaxis core signaling units indicate a constrained kinase-off state

BioRxiv : the Preprint Server for Biology
Olivier MazetBrian R. Crane

Abstract

Bacterial chemoreceptors, the CheA histidine kinase, and the coupling protein CheW comprise transmembrane molecular arrays with remarkable sensing properties. An unanswered question concerns how receptors turn off CheA kinase activity. Chemoreceptor cytoplasmic regions engineered to assume a trimer-of-receptor-dimers configuration form well-defined complexes with CheA and CheW and promote a kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar ESR spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state is especially stable, has relatively low domain mobility and associates the histidine substrate domain P1 and docking domain P2 with the kinase core. Distances measured between spin-labeled ADP molecules bound to the P4 kinase domain provide evidence for a dipped conformation that has been previously proposed from molecular dynamics simulations. Taken together, the data provide an experimentally restrained model for the inhibited state of the core-signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit hi...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Size
Genome
Genomic Stability
Genetic Research
Contraction (Finding)
Nucleic Acid Sequencing
Genomics
Cell Growth
Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.