Feb 1, 1991

Denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions

Journal of Protein Chemistry
S S Deshpande, S Damodaran


The denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions was examined by monitoring changes in the intrinsic fluorescence of tryptophan and tyrosyl residues. Changes in various fluorescence parameters, such as quantum yield, emission maximum, spectral half-width, fluorescence depolarization, and fluorescence quenching by acrylamide, have indicated that while phaseolin is relatively stable up to 8 M urea, it is completely destabilized in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate. Furthermore, while the denaturation of phaseolin in urea solutions followed a two-step process, that in guanidine hydrochloride and sodium dodecyl sulfate followed a single-step process. While the accessibility of tryptophan residues to the nonionic acrylamide quencher is almost 100% in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate, only about 72% was accessible in 8 M urea compared to 52% in native phaseolin. The results presented here suggest that the protomeric structure of phaseolin is quite stable to changes in the environment. This structural stability may be partly responsible for its resistance to proteolysis by various proteinases.

Mentioned in this Paper

Guanidine Sulfite (1: 1)
Peptide Hydrolases
Protein Conformation
Urea Measurement

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.