May 6, 2016

Dendritic spine taxonomy and shape transition analysis

BioRxiv : the Preprint Server for Biology
Tomasz Ku?mierczykDariusz Plewczynski

Abstract

The common approach in morphological analysis of dendritic spines is to categorize spines into subpopulations based on whether they are stubby, mushroom, thin, or filopodia. Corresponding cellular models of synaptic plasticity, long-term potentiation, and long-term depression associate synaptic strength with either spine enlargement or spine shrinkage. Although a variety of automatic spine segmentation and feature extraction methods were developed recently, no approaches allowing for an automatic and unbiased distinction between dendritic spine subpopulations and detailed computational models of spine behavior exist. We propose an automatic and statistically based method for the unsupervised construction of spine shape taxonomy based on arbitrary features. The taxonomy is then utilized in the newly introduced computational model of behavior, which relies on transitions between shapes. Models of different populations are compared using supplied bootstrap-based statistical tests. We compared two populations of spines at two time points. The first population was stimulated with long-term potentiation, and the other in the resting state was used as a control. The comparison of shape transition characteristics allowed us to identify...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Computer Software
Biologic Segmentation
Action Potentials
Chemical Extraction
Long-Term Depression Pathway
Statistical Test
Filopodia
Neuronal Plasticity
Synapses
Learning

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.