PMID: 4734061Sep 1, 1973

Deoxyribonucleic acid-dependent ribonucleic acid polymerase of Caulobacter crescentus

Journal of Bacteriology
I Bendis, L Shapiro

Abstract

Deoxyribonucleic acid-dependent ribonucleic acid (RNA) polymerase (EC 2.7.7.6) was purified from the dimorphic bacterium Caulobacter crescentus at three stages in development. Enzyme from pure populations of stalked cells, as well as populations enriched in swarmer and predivisional cells, appeared identical in subunit structure and template requirements. The molecular weights of the enzyme subunits were 165,000, 155,000, 101,000, and 44,000, respectively. By analogy with RNA polymerase from other bacterial sources, they are considered to be components of the C. crescentus holoenzyme, beta', beta, sigma, and alpha, respectively. The C. crescentus enzyme appeared similar to the Pseudomonas aeruginosa enzyme and unlike the Escherichia coli enzyme with respect to subunit molecular weights and failure to separate into core and sigma components upon phosphocellulose chromatography. In addition, the effects of ionic strength on the time course of polymerization varied both with the sources of bacterial polymerase and bacteriophage DNA.

Citations

Jan 1, 1981·Progress in Biophysics and Molecular Biology·S A Kumar

Related Concepts

Ammonium Sulfate
Carbon Isotopes
Cell-Free System
Centrifugation, Density Gradient
Chromatography, DEAE-Cellulose
Ion-Exchange Chromatography Procedure
DNA, Bacterial
SDS-PAGE
Chemical Precipitation
Protamine Sulfate (USP)

Related Feeds

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.

BioHub - Researcher Network

The Chan-Zuckerberg Biohub aims to support the fundamental research and develop the technologies that will enable physicians to cure, prevent, or manage all diseases in our childrens' lifetimes. The CZ Biohub brings together researchers from UC Berkeley, Stanford, and UCSF. Find the latest research from the CZ Biohub researcher network here.