PMID: 1254593Mar 25, 1976

Derivatives of Clostridium acidi-urici ferredoxin containing altered amino acid sequences. Semisynthetic synthesis, biological activity, and stability

The Journal of Biological Chemistry
E T LodeJ C Rabinowitz

Abstract

The semisynthetic syntheses and some properties of derivatives of Clostridium acidi-urici ferredoxin that contain amino acid deletions or replacements in the peptide chain are described. All 16 stable derivatives prepared, with the exception of [Trp2]ferredoxin, were fully active as electron carriers in the two enzymatic assay systems tested: the phosphoroclastic system and the ferrodoxin-dependent reduction of cytochrome c. E1Trp1]Ferredoxin had 70% of the activity of native ferredoxin in both assay systems. The stability in aerobic solution of [Ala1]ferredoxin, which had had its natural alanyl NH2-terminal residue removed and then replaced chemically, is the same as that of the native ferrodoxin (half-life of approximately 54 days). The relative stabilities of derivatives with a replacement or deletion of the NH2-terminal residue are as follows: [Ala1]- greater than or equal to [Phe1]-, [Lys1]-, [ Pro1]-, [Leu1]- greater than [Met1]- greater than [Gly1]- greater than [Glu1]- greater than des-Ala1-ferrodoxin. The data indicate that a large bulky residue, but not a negatively charged residue, is tolerated in position 1 of the peptide chain and the greatly decreased stability (half-life = 1 day) of des-Ala1-ferredoxin confirms t...Continue Reading

Related Concepts

Ferredoxin
Derivatives
HTN3 gene
Sulfides
DLEU2 wt Allele
DLEU1 wt Allele
CD8A wt Allele
Structure-Activity Relationship
ZMPSTE24 gene
Ferredoxin Activity

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.