Mar 18, 2015

Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas

PLoS Pathogens
Jeffrey G ShannonB Joseph Hinnebusch


Yersinia pestis, the causative agent of plague, is typically transmitted by the bite of an infected flea. Many aspects of mammalian innate immune response early after Y. pestis infection remain poorly understood. A previous study by our lab showed that neutrophils are the most prominent cell type recruited to the injection site after intradermal needle inoculation of Y. pestis, suggesting that neutrophil interactions with Y. pestis may be important in bubonic plague pathogenesis. In the present study, we developed new tools allowing for intravital microscopy of Y. pestis in the dermis of an infected mouse after transmission by its natural route of infection, the bite of an infected flea. We found that uninfected flea bites typically induced minimal neutrophil recruitment. The magnitude of neutrophil response to flea-transmitted Y. pestis varied considerably and appeared to correspond to the number of bacteria deposited at the bite site. Macrophages migrated towards flea bite sites and interacted with small numbers of flea-transmitted bacteria. Consistent with a previous study, we observed minimal interaction between Y. pestis and dendritic cells; however, dendritic cells did consistently migrate towards flea bite sites containi...Continue Reading

  • References33
  • Citations14


Mentioned in this Paper

Neuro-Oncological Ventral Antigen 2
Immune Response
Pathogenic Aspects
Sand Flies
Genus: Phlebotomus

Related Feeds

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.


Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.

CSF & Lymphatic System

This feed focuses on Cerebral Spinal Fluid (CSF) and the lymphatic system. Discover the latest papers using imaging techniques to track CSF outflow into the lymphatic system in animal models.