Mar 20, 2020

The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells

BioRxiv : the Preprint Server for Biology
A. PrasaiM. Huranova

Abstract

Bardet-Biedl Syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. Most BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, BBSome, which mediates the trafficking of ciliary cargoes. Although, the structure of the BBSome has been resolved recently, the mechanism of assembly of this complicated complex in living cells is poorly understood. We generated a large library of human retinal epithelial cell lines deficient in particular BBSome subunit and expressing another subunit tagged with a fluorescent protein. We performed a comprehensive analysis of these cell lines using biochemical and microscopy approaches. Our data revealed that the BBSome formation is a sequential process including a step of the pre-BBSome assembly at pericentriolar satellites nucleated by BBS4, followed by the translocation of the BBSome into the ciliary base mediated by BBS1.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Systems Theory
Adaptation
Loops

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.