Mar 14, 2015

Detecting hidden diversification shifts in models of trait-dependent speciation and extinction

BioRxiv : the Preprint Server for Biology
Jeremy M Beaulieu, Brian C O'Meara

Abstract

The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased their extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are “hidden” states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Patterns
Isolation Aspects
Hidden Border of Nail
Simulation
Solid state

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.