Apr 28, 2020

Synaptic Plasticity in Correlated Balanced Networks

BioRxiv : the Preprint Server for Biology
A. E. AkilK. Josic

Abstract

The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory-inhibitory balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts learning. How does the dynamics of balanced networks change under different plasticity rules? How does correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, and structure across the network? To address these questions, we develop a general theory of plasticity in balanced networks. We show that balance can be attained and maintained under plasticity induced weight changes. We find that correlations in the input mildly, but significantly affect the evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with their final configuration dependent on the initial state of the network. Lastly, we sho...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Patterns
Secondary Glioblastoma
Genes
Gene Mutation
Isocitrate Dehydrogenase Activity
Gene Expression
Binding (Molecular Function)
Literature
Glioblastoma Multiforme Pathway
Structure

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.