Feb 28, 2020

Determining the biological mechanisms of action for environmental exposures: Applying CRISPR/Cas9 to toxicological assessments

Toxicological Sciences : an Official Journal of the Society of Toxicology
Henry LujanChristie Sayes

Abstract

Toxicology is a constantly evolving field, especially in the area of developing alternatives to animal testing. Toxicological research must evolve and utilize adaptive technologies in an effort to improve public, environmental, and occupational health. The most commonly cited mechanisms of toxic action after exposure to a chemical or particle test substance is oxidative stress. However, because oxidative stress involves a plethora of genes and proteins, the exact mechanism(s) are not commonly defined. Exact mechanisms of toxicity can be revealed using an emerging laboratory technique referred to as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats). This paper reviews the most common CRISPR techniques utilized today and how each may be applied in toxicological science. Specifically, the CRISPR/CRISPR-associated (Cas) protein complex is used for single gene knock-outs, while CRISPR interference/activation (CRISPRi/CRISPRa) is used for silencing or activating (respectively) ribonucleic acid (RNA). Finally, CRISPR libraries are used for knocking-out entire gene pathways. This review highlights the application of CRISPR in toxicology to elucidate the exact mechanism through which toxicants perturb normal cellular fu...Continue Reading

  • References83
  • Citations

References

  • References83
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Chemicals
Environmental Exposure
Laboratory Procedures
cDNA Library
Oxidative Stress
CRISPR-Associated Protein Complex Proteins
RNA
Maintenance of Crispr Repeat Elements
Toxicology
Public Entity

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Nature Reviews. Molecular Cell Biology
Kim Baumann
The CRISPR Journal
Rodolphe Barrangou
Nature Methods
Nicole Rusk
International Journal of Food Microbiology
Philippe HorvathRodolphe Barrangou
Nature Methods
Nicole Rusk
© 2020 Meta ULC. All rights reserved