Jul 31, 2013

Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER

Cell
Zai-Rong ZhangRamanujan S Hegde

Abstract

Newly synthesized membrane proteins are queried by ubiquitin ligase complexes and triaged between degradative and nondegradative fates. The mechanisms that convert modest differences in substrate-ligase interactions into decisive outcomes of ubiquitination are not well understood. Here, we reconstitute membrane protein recognition and ubiquitination in liposomes using purified components from a viral-mediated degradation pathway. We find that substrate-ligase interactions in the membrane directly influence processivity of ubiquitin attachment to modulate polyubiquitination. Unexpectedly, differential processivity alone could not explain the differential fates in cultured cells of degraded and nondegraded clients. Both computational and experimental analyses identified continuous deubiquitination as a prerequisite for maximal substrate discrimination. Deubiquitinases reduce polyubiquitin dwell times preferentially on clients that dissociate more rapidly from the ligase. This explains how small differences in substrate-ligase interaction can be amplified into larger differences in net degradation. These results provide a conceptual framework for substrate discrimination during membrane protein quality control.

  • References52
  • Citations37

Mentioned in this Paper

Pathologic Cytolysis
Monoclonal Antibodies
Hygromycin A
Polyubiquitination
Biochemical Pathway
Proteasome Pathway
Choline
Ubiquitins
Doxycycline
Conjugation

Related Feeds

Cajal Bodies & Gems

Cajal bodies or coiled bodies are dense foci of coilin protein. Gemini of Cajal bodies, or gems, are microscopically similar to Cajal bodies. It is believed that Cajal bodies play important roles in RNA processing while gems assist the Cajal bodies. Find the latest research on Cajal bodies and gems here.

Cell eTOC

Cell is a scientific journal publishing research across a broad range of disciplines within the life sciences field. Discover the latest research from Cell here.

Advanced Imaging of Cellular Signaling

Cell signaling is a vital mechanism for communication within cells and outside with the environment. Several different signaling pathways have been found and advanced imaging techniques are being developed to visualize the molecules involved in these signaling pathways. Find the latest research in advanced imaging of cellular signaling here.