Aug 24, 1999

Development of a modified selective amplifier gene for hematopoietic stem cell gene therapy

Gene Therapy
K M MatsudaK Ozawa


We have proposed a novel concept, ie selective expansion of transduced cells, to overcome the low efficiency of gene transfer into hematopoietic stem cells. Previously, a fusion gene encoding a chimeric receptor (DeltaGCRER) between the mouse granulocyte colony-stimulating factor receptor (G-CSFR) and the hormone-binding domain of rat estrogen receptor was constructed as a 'selective amplifier gene'. Although the chimeric gene conferred estrogen-inducible proliferation on the transduced Ba/F3 cells, it also mediated differentiation of the retrovirally transduced 32D cells upon estrogen treatment. Since only a growth signal is required for our purpose, we further modified the DeltaGCRER gene to attenuate its differentiation signal. Based on the observation that tyrosine-703 in wild-type G-CSFR plays a pivotal role in transmitting the differentiation signal, phenylalanine was substituted for this residue in DeltaGCRER. When the resultant selective amplifier gene (DeltaY703F-GCRER gene) was expressed in 32D cells, sustained growth was supported by estrogen, while differentiation was suppressed. These cells ceased to grow upon estrogen withdrawal and differentiated with G-CSF treatment. The present findings suggested that DeltaY703...Continue Reading

Mentioned in this Paper

Fusion Gene
Gene Transfer Techniques
Colony-Forming Units, Hematopoietic
Gene Amplification
Estrogen receptor alpha, human
Granulocyte Colony-Stimulating Factor
Chimera Organism
Cell Communication
Cell Differentiation Process

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

Blood And Marrow Transplantation

The use of hematopoietic stem cell transplantation or blood and marrow transplantation (bmt) is on the increase worldwide. BMT is used to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Here is the latest research on bone and marrow transplantation.