May 1, 1982

Developmental changes in chromatin organization in rat cerebral hemisphere neurons and analysis of DNA reassociation kinetics

Neurochemical Research
P GreenwoodI R Brown


Previous reports have demonstrated that neuronal nuclei of rabbit, mouse and rat cerebral hemispheres exhibit a short DNA repeat length of 160 bp compared to the more typical repeat size of 200 bp found in glial nuclei and other cell types of higher eukaryotes. In this study we report that the conversion of chromatin to a short DNA repeat length in rat cerebral hemisphere neurons is a gradual process which begins between the first and second day after birth and is complete by 8 days. In these neurons, histone H1 appears to be less accessible to degradation by trypsin in the newborn rat brain compared to the 8 day old rat. This suggests that the developmental shift to a short DNA repeat length may be accompanied by a dispersal or decondensation of neuronal chromatin which results in an increased accessibility of neuronal histone H1 to degradation by trypsin. The increase in nuclear DNA content to 3.5C which has been reported in rat cortical neurons during early postnatal development does not appear to be associated with a selective amplification of a subset of DNA sequences as determined by DNA reassociation kinetics.

Mentioned in this Paper

Nucleic Acid Renaturation
August Rats
Entire Cerebral Hemisphere
Cell Nucleus
Gene Amplification Technique
Cortical Cell Layer of the Cerebral Cortex

About this Paper

Related Feeds


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.