May 30, 2020

DFIQ, a Novel Quinoline Derivative, Shows Anticancer Potential by Inducing Apoptosis and Autophagy in NSCLC Cell and In Vivo Zebrafish Xenograft Models

Cancers
Hurng-Wern HuangChien-Chih Chiu

Abstract

Lung cancer is one of the deadliest cancers worldwide due to chemoresistance in patients with late-stage disease. Quinoline derivatives show biological activity against HIV, malaria, bacteriuria, and cancer. DFIQ is a novel synthetic quinoline derivative that induces cell death in both in vitro and in vivo zebrafish xenograft models. DFIQ induced cell death, including apoptosis, and the IC50 values were 4.16 and 2.31 μM at 24 and 48 h, respectively. DFIQ was also found to induce apoptotic protein cleavage and DNA damage, reduce cell cycle-associated protein expression, and disrupt reactive oxygen species (ROS) reduction, thus resulting in the accumulation of superoxide radicals. Autophagy is also a necessary process associated with chemotherapy-induced cell death. Lysosome accumulation and lysosome-associated membrane protein-2 (LAMP2) depletion were observed after DFIQ treatment, and cell death induction was restored upon treatment with the autophagy inhibitor 3-methyladenine (3-MA). Nevertheless, ROS production was found to be involved in DFIQ-induced autophagy activation and LAMP2 depletion. Our data provide the first evidence for developing DFIQ for clinical usage and show the regulatory mechanism by which DFIQ affects ROS,...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Proteolysis
Reactive Oxygen Species
3-methyladenine
Resistance Process
Positive Regulation of Cell Death
DNA Damage
Cell Death
Autophagy
Superoxides
Cell Cycle

Related Feeds

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Autophagy: Cancer & Parkinson

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in cancer and Parkinson’s.

Autophagy & Disease

Autophagy is an important cellular process for normal physiology and both elevated and decreased levels of autophagy are associated with disease. Here is the latest research.

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Autophagy & Metabolism

Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.

Cell Cycle Control & Proteolysis

Key regulators of cell cycle, including cyclins, cyclin dependent kinase inhibitors, DNA replication factors, are controlled by proteolysis. Discover the latest research on cell cycle control and proteolysis.

Autophagy & Model Organisms

Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms

Autophagy: Cancer & Parkinson (MDS)

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in cancer and Parkinson’s.