Apr 10, 2003

Different glial response to methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity

Naunyn-Schmiedeberg's Archives of Pharmacology
David PubillElena Escubedo


The consequences of the neurotoxic insult induced by 3,4-methylenedioxymethamphetamine (MDMA, an amphetamine derivative with specific action on the serotonergic system) were compared with those of methamphetamine (a derivative with specific action on dopaminergic system) in rats. Both drugs induced a very similar loss of body weight, especially evident 24 h after treatment. Their hyperthermic profile was also very similar and was dependent on ambient temperature, corroborating the thermo-dysregulatory effect of both substances. Methamphetamine (four injections of 10 mg kg(-1) s.c. at 2-h intervals) induced the loss of dopaminergic (35%) but not of serotonergic, terminals in the rat striatum and, simultaneously, a significant increase in striatal peripheral-type benzodiazepine receptor density, pointing to a glial reaction. Evidence for this drug-induced astrogliosis was the increased heat shock protein 27 (HSP27) expression in striatum, cortex and hippocampus. MDMA (20 mg kg(-1) s.c. b.i.d. for 4 days) induced a similar dopaminergic lesion in the striatum 3 days post-treatment, which reversed 4 days later. An important neurotoxic effect on serotonergic terminals was also observed in the cortex, striatum and hippocampus 3 days p...Continue Reading

  • References
  • Citations72


  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

HSPB1 gene
Heat shock proteins
Cortex Bone Disorders
Adrenal Cortex Diseases
Glial Fibrillary Acidic Protein
Serotonin-binding protein

Related Feeds


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.