Sep 21, 1976

Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system

Biochimica Et Biophysica Acta
A Grüneberg, E Komor


The uptake of hexoses by Chlorella vulgaris is accompanied by the uptake of protons. For 6-deoxyglucose a stoichiometry of one proton taken up per sugar molecule has been measured, whereas for 1-deoxyglucose approximately two protons are taken up per sugar molecule. It was found that in the presence of 1-deoxyglucose a considerable proportion of "carrier" catalyzes the transport of protons without the concomitant transport of sugar. Presumably, the binding of sugar initiates the translocation of the carrier-proton-sugar complex, but whereas 1-deoxyglucose can still dissociate from the complex at the external side of the cytoplasmic membrane, the translocation of the carrier-proton complex continues. This conclusion was reached since (a) the composition of the translocated carrier-proton-sugar complex is the same for both sugar. Its formation is a first order reaction with respect to protons. (b) When 6-deoxyglucose, present inside cells, is exchanged for external sugar, the exchange ratio is two to one when the external sugar is 1-deoxyglucose, two molecules of 6-deoxyglucose are lost for each molecule of 1-deoxyglucose entering. This result indicates that during uptake of 1-deoxyglucose statistically only each second carrier m...Continue Reading

  • References6
  • Citations2
  • References6
  • Citations2

Mentioned in this Paper

Tissue Membrane
Energy Metabolism
Chlorella vulgaris
Symporter Activity
Deoxy Sugars

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.