Nov 1, 1989

Differential effect of global ischemia on the ryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum

Circulation Research
J J FeherN H Manson

Abstract

The effect of ischemia on the function of cardiac sarcoplasmic reticulum (SR) was assessed by the calcium uptake rate of rat whole-heart homogenates in the presence of 10 mM oxalate. Previous studies have shown that this uptake is restricted to the SR. The contribution of the ryanodine-sensitive fractions of the SR to the total homogenate uptake was assessed by using 20 microM ruthenium red and 625 microM ryanodine to close the SR calcium release channel under previously established optimal conditions. Global ischemia of 10, 15, 30, and 60 minutes depressed homogenate calcium uptake rate 19 +/- 2%, 50 +/- 6%, 65 +/- 3%, and 81 +/- 5%, respectively. This decrease was not observed when the uptake rates were measured after closure of the calcium channel with ryanodine or ruthenium red. Similar results were obtained with a Langendorff in vitro perfusion preparation, in which calcium uptake was decreased 35 +/- 5%, 37 +/- 8%, 58 +/- 7%, and 64 +/- 4% after 10, 15, 30, and 60 minutes of ischemia, but no significant decrease was observed when homogenate uptake rates were measured in the presence of ryanodine. Thus, ischemia caused a depression in the calcium uptake rate of cardiac SR only when this activity was measured in the absence...Continue Reading

  • References41
  • Citations24

References

Mentioned in this Paper

Ischemia
Plant alkaloid
Lymphoma, Non-Hodgkin
Calcium
August Rats
Myocardium
Ryanodine
Sarcoplasmic Reticulum
Drug Resistance
Heart Diseases

Related Feeds

B-Cell Lymphoma

B-cell lymphomas include lymphomas that affect B cells. This subtype of cancer accounts for over 80% of non-Hodgkin lymphomas in the US. Here is the latest research.

Blood And Marrow Transplantation

The use of hematopoietic stem cell transplantation or blood and marrow transplantation (bmt) is on the increase worldwide. BMT is used to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Here is the latest research on bone and marrow transplantation.