Differential effect of halide anions on the hydrolysis of different dansyl substrates by thermolysin

J J YangH E Van Wart


The effect of sodium halide salts on the hydrolysis of three of the dansyl (Dns) peptide substrates described in the previous paper (Yang & Van Wart, 1994) by thermolysin have been studied. Increasing concentrations of sodium chloride decrease the KM value for the hydrolysis of the tripeptides Dns-Gly-Phe-Ala and Dns-Ala-Phe-Ala but leave kcat unaltered. This kinetic behavior is described by a nonessential activation mechanism in which chloride binds preferentially to the enzyme-substrate complex. Similar trends are found for the sodium bromide and fluoride salts. In contrast, sodium chloride decreases both KM and kcat almost equally for the hydrolysis of Dns-Ala-Ala-Phe-Ala, leaving kcat/KM unchanged. Thus, chloride is an uncompetitive inhibitor of this substrate. Molecular modeling studies have been carried out in order to explain the effect of chloride on the binding of these dansyl peptides. The decrease in KM for the hydrolysis of all three substrates is attributed to an interaction of chloride with Arg-203 located in the active site to stabilize the enzyme-substrate complexes. The differential effect of chloride on the kcat values for the hydrolysis of the dansyl tripeptides vs dansyl tetrapeptide is related to difference...Continue Reading

Related Concepts

Dansyl Compounds
Substrate Specificity
Sodium Compounds, Inorganic

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.