DOI: 10.1101/486308Dec 3, 2018Paper

Differential responses of antioxidants and dehydrin expression in two switchgrass (Panicum virgatum) cultivars contrasting in drought tolerance

BioRxiv : the Preprint Server for Biology
Yiming LiuGuodao Liu


Drought stress is a major limiting factor for plant growth and development in many regions of the world. This study was designed to investigate antioxidant metabolism and dehydrin expression responses to drought stress in two switchgrass cultivars (drought tolerant Alamo, and drought sensitive Dacotah) contrasting in drought tolerance. The plants were subjected to well-watered [100% evapotranspiration (ET)] or drought stress (30%-50% ET) conditions for up to 24 d in growth chambers. Drought stress decreased leaf relative water content (RWC), increased leaf electrolyte leakage (EL), leaf malondialdehyde (MDA) content in two cultivars, but Alamo exhibited higher leaf RWC level, lower leaf EL and MDA when compared to Dacotah at 24 d of drought treatment. Drought stress also increased superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in two cultivars, Alamo had relatively higher SOD, CAT and APX activities and greater abundance of SOD and APX isozymes than Dacotah at 24 d of drought treatment. Alamo had higher abundance of 55 KDa and 18 KDa dehydrin accumulation than Dacotah under drought treatment. Relative genes expression level of PvCAT1, PvAPX2, PvERD and PvPIP1;5 in Alamo were significantly h...Continue Reading

Related Concepts

Superoxide Dismutase
Plant Leaves
Panicum virgatum
Dehydrin-like protein, Arabidopsis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.