Nov 18, 2013

Differentiation-dependent telomeric long non-coding transcription in a model of skeletal myogenesis

BioRxiv : the Preprint Server for Biology
Scott BrouiletteKen Suzuki


Telomeres comprise the distal ends of eukaryotic chromosomes, serve to maintain genomic integrity and are extended by the ribonucleoprotein telomerase. Recent evidence indicates that telomeres are transcribed to generate long non-coding RNAs (lncRNAs) and that these transcripts (TERRA) may inhibit telomerase activity. In this study we assessed telomerase activity and telomeric lncRNA expression in a mouse model of skeletal myogenesis. Using the C2C12 cell line we demonstrated decreased telomerase activity during differentiation into terminally-differentiated skeletal myotubes. Despite existing in a post-mitotic state, residual telomerase activity remained in C2C12 myotubes, indicating a role independent of telomere extension. Telomeric transcripts were detected in both myoblasts and myotubes, with reduced expression during differentiation correlating with reduced telomerase expression. Our data indicate that in a mouse model of skeletal myogenesis TERRA expression does not reduce telomerase activity, suggesting that their relationship is more complex than originally perceived; the role of telomeric derived lncRNAs in relation to telomerase activity may be cell-type specific. These findings raise the possibility for novel non-te...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Ribonucleoprotein Activity
RNA, Untranslated
Transcription, Genetic
Skeletal System
Cell Differentiation Process

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Wiley Interdisciplinary Reviews. RNA
Emilio Cusanelli, Pascal Chartrand
The International Journal of Biochemistry & Cell Biology
Amadou Bah, Claus M Azzalin
© 2020 Meta ULC. All rights reserved