Jun 1, 2016

Digital dissection of arsenate reductase enzyme from an arsenic hyperccumulating fern Pteris vittata

BioRxiv : the Preprint Server for Biology
Zarrin BasharatAzra Yasmin

Abstract

Action of arsenate reductase is crucial for the survival of an organism in arsenic polluted area. Pteris vittata, also known as Chinese ladder brake, was the first identified arsenic hyperaccumulating fern with the capability to convert [As(V)] to arsenite [As(III)]. This study aims at sequence analysis of the most important protein of the arsenic reduction mechanism in this specie. Phosphorylation potential of the protein along with possible interplay of phosphorylation with O-beta-GlcNAcylation was predicted using neural network based webservers. Secondary and tertiary structure of arsenate reductase was then analysed. Active site region of the protein comprised a rhodanese-like domain. Cursory dynamics simulation revealed that folds remained conserved in the rhodanese main but variations were observed in the structure in other regions. This information sheds light on the various characteristics of the protein and may be useful to enzymologists working on the improvement of its traits for arsenic reduction.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Biological Neural Networks
Digitalization Done
Tertiary Protein Structure
Protein Phosphorylation
Arsenite
Arsenic
Neural Network Simulation
Sequence Analysis
Organism

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.