Dec 1, 1987

Direct microinjection of soman or VX into the amygdala produces repetitive limbic convulsions and neuropathology

Brain Research
J H McDonoughM T Nipwoda

Abstract

Rats were injected in the amygdala and other forebrain sites with nmolar amounts of the highly toxic organophosphate 'nerve agent' compounds soman or VX (O-ethyl-S-(2-diisopropylaminoethyl)-methylphosphonothioate) in an attempt to determine the mechanism(s) responsible for the permanent brain pathology that has been observed following systemic intoxication with these agents. Injections were performed using a stereotaxically guided microsyringe in animals maintained under halothane/oxygen anesthesia or using chronically implanted cannulae in conscious animals. Bilateral microsyringe injections of up to 11.0 nmol soman into the amygdala failed to evoke abnormal behavior or brain pathology. When rats were pretreated with lithium chloride, or when carbachol was coadministered, soman injections evoked repetitive clonic convulsions and neuropathology. Unilateral injections of 3.4 nmol of VX into the amygdala elicited convulsions and brain damage in 67% of the animals tested. Atropine pretreatment (15.0 mg/kg, i.p.) prevented the development of convulsions and brain damage. Neuropathology was observed only in animals that developed repetitive convulsions; the piriform and entorhinal cortex, amygdala, hippocampus and thalamus were the ...Continue Reading

  • References40
  • Citations54

Citations

Mentioned in this Paper

Microinjections
Soman
August Rats
Brain
Organothiophosphorus Compounds
Non-epileptic Convulsion
Brain Damage, Chronic
Amygdaloid Structure
Convulsant Effect
Methylphosphonothioic acid S-(2-(bis(1-methylethyl)amino)ethyl) O-ethyl ester

Related Feeds

Amygdala: Sensory Processes

Amygdalae, nuclei clusters located in the temporal lobe of the brain, play a role in memory, emotional responses, and decision-making. Here is the latest research on sensory processes in the amygdala.

Amygdala and Midbrain Dopamine

The midbrain dopamine system is widely studied for its involvement in emotional and motivational behavior. Some of these neurons receive information from the amygdala and project throughout the cortex. When the circuit and transmission of dopamine is disrupted symptoms may present. Here is the latest research on the amygdala and midbrain dopamine.