DOI: 10.1101/510487Jan 4, 2019Paper

Discovery of New Classes of Glycine transporter 2 (GlyT2) Inhibitors and Study of GlyT2 Selectivity by Combination of Novel Structural Based Virtual Screening Approach and Free Energy Perturbation (FEP+) Calculations

BioRxiv : the Preprint Server for Biology
Suman SirimullaSuman Sirimulla

Abstract

In recent years, the mammalian GlyT2 transporter have emerged as a promising target for the development of anti-chronic pain agents. In our current work, we discovered a new set of promising hits that inhibit the glycine transport at nano and micromolar activity and have excellent selectivity over GlyT1 (as shown by in vitro studies), using a newly designed virtual screening (VS) protocol that combines a structure-based pharmacophore and docking screens. Furthermore, the free energy perturbation (FEP+ protocol) calculations and molecular dynamics (MD) studies revealed the GlyT2 amino acid residues critical for the binding and selectivity of both Glycine and our Lead1 compound. The FEP+ results well-matched available literature mutational data proving the quality of generated GlyT2 structure. Based on these calculations we propose that Lead1 may also be a strong inhibitor of the neutral and basic amino acid transporter B (0+) (SLC6A14). Thus, the subsequent lead optimization and characterization of refined compounds may lead to both chronic pain and pancreatic cancer agents addressing an unmet and challenging clinical needs.

Related Concepts

Glycine
Literature
Polytetrafluoroethylene
FEP Protocol
Pancreatic Carcinoma
Inhibitors
Molecular Dynamics
Pharmacophore
Structure
In Vitro Study

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.