Oct 24, 2018

Discovery of the role of a SLOG superfamily biological conflict systems associated protein IodA (YpsA) in oxidative stress protection and cell division inhibition in Gram-positive bacteria

BioRxiv : the Preprint Server for Biology
Robert S BrzozowskiPrahathees J Eswara

Abstract

Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical to comprehend the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that increased expression of ypsA leads to cell division inhibition due to defective assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division. We showed that cell division inhibition by YpsA is linked to glucose availability. We generated YpsA mutants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division. Therefore, we propose ypsA to be renamed as iodA for inhibitor of division.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Gram-Positive Bacteria
Hydrogen Peroxide
Cell Division
Environment
Mutant Proteins
Oxidative Stress
Oxidative Stress Analysis
Binding Protein
Site
Bacillus subtilis

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.