Nov 1, 2018

Discrete Mechanical Growth Model for Plant Tissue

BioRxiv : the Preprint Server for Biology
Louis D Weise, Kirsten H.W.J. ten Tusscher

Abstract

We present a discrete mechanical model to study plant development. The method is built up of mass points, springs and hinges mimicking the plant cell wall's microstructure. To model plastic growth the resting lengths of springs are adjusted; when springs exceed a threshold length, new mass points, springs and hinges, are added. We formulate a stiffness tensor for the springs and hinges as a function of the fourth rank tensor of elasticity and the geometry of the mesh. This allows us to approximate the material law as a generalized orthotropic Hooke's law, and control material properties during growth. The material properties of the model are illustrated in numerical simulations for finite strain and plastic growth. To solve the equations of motion of mass points we assume elastostatics and use Verlet integration. The method is demonstrated in simulations when anisotropic growth causes emergent residual strain fields in cell walls and a bending of bulk tissue. The method can be used in multilevel models to study plant development, for example by coupling it to models for cytoskeletal, hormonal and gene regulatory processes.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Animal Cancer Model
Decompression Sickness
Hook
Bending - Changing Basic Body Position
Neuronal Plasticity
Surgical Mesh
Genes, Regulator
Cell Wall
Plant Development
Simulation

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.