Mar 24, 2020

Dissenting degradation: Deubiquitinases in cell cycle and cancer

Seminars in Cancer Biology
Thomas Bonacci, Michael J Emanuele

Abstract

Since its discovery forty years ago, protein ubiquitination has been an ever-expanding field. Virtually all biological processes are controlled by the post-translational conjugation of ubiquitin onto target proteins. In addition, since ubiquitin controls substrate degradation through the action of hundreds of enzymes, many of which represent attractive therapeutic candidates, harnessing the ubiquitin system to reshape proteomes holds great promise for improving disease outcomes. Among the numerous physiological functions controlled by ubiquitin, the cell cycle is among the most critical. Indeed, the discovery that the key drivers of cell cycle progression are regulated by the ubiquitin-proteasome system (UPS) epitomizes the connection between ubiquitin signaling and proliferation. Since cancer is a disease of uncontrolled cell cycle progression and proliferation, targeting the UPS to stop cancer cells from cycling and proliferating holds enormous therapeutic potential. Ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic proteases termed deubiquitinases or DUBs. While ubiquitination is tightly linked to proliferation and cancer, the role of DUBs represents a layer of complexity in this landscape t...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Post-Translational Protein Processing
Ubiquitinated Proteins
Proteome
Cell Proliferation
Duboraya protein, zebrafish
Cell Cycle Progression
Cell Cycle
Multicatalytic endopeptidase complex
Deubiquitinating enzyme
Proteolysis

Related Feeds

Cell Cycle Control & Proteolysis

Key regulators of cell cycle, including cyclins, cyclin dependent kinase inhibitors, DNA replication factors, are controlled by proteolysis. Discover the latest research on cell cycle control and proteolysis.